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The Fueter-Sce Mapping theorem

Notations

Let Rn be the real Clifford algebra over n imaginary units e1, . . . , en
satisfying the relations

eiej + ejei = 0, i 6= j e2
i = −1.

An element in the Clifford algebra will be denoted by∑
A

eAxA

where
A = {i1 . . . ir} ∈ P{1, 2, . . . , n}, i1 < . . . < ir

is a multi-index and eA = ei1 ei2 . . . eir , e∅ = 1.
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The Fueter-Sce Mapping theorem

An element (x0, x1, . . . , xn) ∈ Rn+1 will be identified with the element

x = x0 + x = x0 +
n∑

j=1

xjej ∈ Rn

called, in short, paravector. The norm of x ∈ Rn+1 is defined as

|x |2 = x2
0 + x2

1 + . . .+ x2
n .

The real part x0 of x is also denoted by Re[x ]; x is the 1-vector part of x ;
the conjugate of x is defined by x̄ = x0 − x = x0 −

∑n
j=1 xjej .
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The sphere Sn−1

Sn−1 = {x = e1x1 + . . .+ enxn | x2
1 + . . .+ x2

n = 1} ω ∈ Sn−1, ω2 = −1

The complex plane Cω

The vector space R+ ωR passing through 1 and ω ∈ Sn−1 will be
denoted by Cω, while an element belonging to Cω will be denoted by
u + ωv , for u, v ∈ R. Cω can be identified with a complex plane.
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Proposition

Let f be an holomorphic function in an open set of the upper half
complex plane

f (x + ιy) = u(x , y) + ιv(x , y)

q = x0 + ix1 + jx2 + kx3 := x0 + q

then

∆4(u(x0, |q|) +
q

|q|
v(x0, |q|))

is Fueter regular, while when x0 + x ∈ Rn+1

∆
n−1

2
n+1(u(x0, |x |) +

x

|x |
v(x0, |x |))

is in the kernel of Dirac operator ∂x = ∂x0 +
∑

i ei∂xi .
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The Fueter-Sce Mapping theorem
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The inverse Fueter mapping theorem, I

Intrinsic functions

Let f (u + ιv) = α(u, v) + ιβ(u, v) be a function defined for
z = u + ιv ∈ U ⊆ C, U symmetric with respect to the real axis. Assume
α(u,−v) = α(u, v), β(u,−v) = −β(u, v), (α, β) satisfying the
Cauchy-Riemann equations.

Definition

Let U = {x = x0 + x ∈ Rn+1 | (x0, |x |) ∈ U} and let
SM(U) = {f : U ⊆ Rn+1 → Rn, f (x) = f (x0 + ω|x |) =
α(x0, |x |) + ωβ(x0, |x |) α, β Rn-valued and with the above properties }.
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The inverse Fueter mapping theorem, I

Definition (Axially monogenic function)

Let U be an axially symmetric open set in Rn+1, and let
x = x0 + x = x0 + rω ∈ U. We say that f̃ is an axially monogenic
function if there exist two functions A = A(x0, r) and B = B(x0, r),
independent of ω ∈ Sn−1 and with values in Rn, such that

f̃ (x) = A(x0, r) + ωB(x0, r),

and f̃ is a monogenic function, that is it is in the kernel of the Dirac
operator. We denote by AM(U) the set of left axially monogenic
functions on the open set U.
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The inverse Fueter mapping theorem, I

Theorem

Let U be an axially symmetric open set in Rn+1. Then the functions
A = A(x0, r) and B = B(x0, r) satisfy the Vekua’s system, i.e.{

∂x0 A(x0, r)− ∂rB(x0, r) = n−1
r B(x0, r),

∂x0 B(x0, r) + ∂rA(x0, r) = 0.
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The inverse Fueter mapping theorem, I

Problem (The inverse Fueter mapping)

Let n be an odd number and let U be a suitable open set in Rn+1. Given
an axially monogenic function f̃ , find a function f ∈ SM(U) such that

f̃ (x) = ∆
n−1

2 f (x).

Find an integral representation of the map

AM(U)→ SM(U), f̃ 7→ f .
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The inverse Fueter mapping theorem, I

Definition

Let n be an odd number and let U ⊆ Rn+1 be an axially symmetric open
set. Suppose that f ∈ SM(U). We say that a function f is a Fueter
primitive of f̃ ∈ AM(U) if

∆
n−1

2 f (x) = f̃ (x)

on U.
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Definition (The functions N+
n (x) and N−n (x))

Let G(x − y) be the monogenic Cauchy kernel with x = x0 + x ∈ Rn+1

and we assume y = ω ∈ Rn, ω ∈ Sn−1. We define

N+
n (x) =

∫
Sn−1

G(x − ω) dS(ω), N−n (x) =

∫
Sn−1

G(x − ω)ω dS(ω).

where dS(ω) is the scalar element of surface area of Sn−1.
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The inverse Fueter mapping theorem, I

Theorem (The restrictions of N+
n (x) and N−n (x) to x = 0)

Let n be an odd number. Let N+
n and N−n be the functions defined

above. Then their restrictions to x = 0 are given by

N+
n (x)|x=0 = Cn

x0

(x2
0 + 1)(n+1)/2

, N−n (x)|x=0 = −Cn
1

(x2
0 + 1)(n+1)/2

,

where

Cn :=
1√
π

Γ((n + 1)/2)

Γ(n/2)
. (1)
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The inverse Fueter mapping theorem, I

The structure of the Fueter primitives of N+
n and N−n

Let n be an odd number and denote by W+
n and W−n the Fueter

primitives of N+
n and N−n , respectively. Consider the functions:

W+
n (x0) :=

Cn
Kn

D−(n−1) x0

(x2
0 + 1)(n+1)/2

,

W−n (x0) := − Cn
Kn

D−(n−1) 1

(x2
0 + 1)(n+1)/2

,

where the symbol D−(n−1) stands for the (n − 1) integrations with
respect to x0. Then replacing x0 by x in W+

n (x0) and in W−n (x0) we get
W+

n (x) and W−n (x), respectively.
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The inverse Fueter mapping theorem, I

Corollary (Explicit Fueter’s primitives of N+
n and N−n for n = 3 )

W+
3 (x) =

1

2π
arctan x , W−3 (x) = − 1

2π
x arctan x .
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The inverse Fueter mapping theorem, I

Theorem (The inverse Fueter mapping theorem)

Let f̃ (x) = A(x0, r) + ωB(x0, r) be an axially monogenic function defined
on an axially symmetric open set U ⊆ Rn+1. Let Γ be the boundary of an
open bounded subset V of the half plane R+ ωR+ and let
V = {x = u + ωv , (u, v) ∈ V, ω ∈ Sn−1} ⊂ U. Moreover suppose that
Γ is a regular curve whose parametric equations y0 = y0(s), r = r(s).
Then the function

f (x) =

∫
Γ

W−n
(1

r
(x − y0)

)
rn−2(dy0 A(y0, r)− dr B(y0, r))

−
∫

Γ

W+
n

(1

r
(x − y0)

)
rn−2(dy0B(y0, r)− drA(y0, r)). (2)

is a Fueter’s primitive of f̃ (x) on V , where W+
n and W−n are Fueter

primitives of N+
n (x) and N−n (x), respectively.
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Theorem (The inverse Fueter mapping theorem for the quaternionic case)

Let f̃ (q) = A(q0, r) + ωB(q0, r) be an axially Fueter regular function
defined on an axially symmetric domain U ⊆H. Let Γ be the boundary
of an open bounded subset V of the half plane R+ ωR+ and let
V = {x = u + ωv , (u, v) ∈ V, ω ∈ Sn−1} ⊂ U. Moreover suppose that
Γ is a regular curve . Then the function

f (q) =

∫
Γ

W−
(1

r
(q − y0)

)
r (dy0 A(y0, r)− dr B(y0, r))

−
∫

Γ

W+
(1

r
(q − y0)

)
r (dy0B(y0, r)− drA(y0, r)). (3)

is a Fueter primitive of f̃ (q) on V , where W+(q) = 1
2π arctan q and

W− = − 1
2π q arctan q.
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The inverse Fueter mapping theorem, II

Definition

A function f̃k(x) is said to be an axially monogenic function of degree k
if it is of the form

f̃k(x) = Ak(x0, r , ω) + ωBk(x0, r , ω)

where Ak(x0, r , ω) and Bk(x0, r , ω) satisfy the Vekua-type system:{
∂x0 Ak − ∂rBk = k+n−1

r Bk ,
∂x0 Bk + ∂rAk = k

r Ak .
(4)
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Definition

A left monogenic polynomial Pk in Rn is called inner spherical monogenic
of degree k if it is homogeneous of degree k , that is Pk(x/|x |)|x |k and it
satisfies ∂xPk(x) = 0.

Let Ak(x0, r , ω) + ωBk(x0, r , ω) be an axially monogenic function of
degree k. For any (x0, r) fixed the functions Ak and Bk are inner
spherical monogenic of degree k in ω and can be written as

Ak(x0, r , ω) = A(x0, r)Pk(ω), Bk(x0, r , ω) = B(x0, r)Pk(ω). (5)
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The inverse Fueter mapping theorem, II

Theorem

Let U ⊆ Rn+1 be an axially symmetric open set. Then every monogenic
function f̃ : U → Rn can be written in the form f̃ (x) =

∑∞
k=0 f̃k(x) with

f̃k(x) =

mk∑
j=1

[Ak,j(x0, r) + ωBk,j(x0, r)]Pk,j(ω) (6)

where Pk,j form a basis for the space of spherical monogenics of degree k
of dimension mk and Ak,j , Bk,j are suitable real valued functions.
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The inverse Fueter mapping theorem, II

Problem

Find the inverse of the Fueter mapping theorem in the case of monogenic
functions of type (Ak,j(x0, r) + ωBk,j(x0, r))Pk,j(ω) by providing their
Fueter primitive.

N (U) = {f : U ⊆ Rn+1 → Rn, f (x) = f (x0 + I |x |) =
α(x0, |x |) + ωβ(x0, |x |) | α(u, v) + ιβ(u, v) is a C-valued holomorphic
function in u + ιv ∈ U}.
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The inverse Fueter mapping theorem, II

Definition (Fueter’s Primitive)

Let n be an odd number and let U ⊆ Rn+1 be an axially symmetric
domain. Let f̃ (x)Pk(x) = (A(x0, r) + ωB(x0, r))Pk(x) be an axially
monogenic function of degree k ∈N0. We say that a function
f (x)Pk(x), f ∈ N (U) is a Fueter primitive of f̃ (x)Pk(x) if

∆k+ n−1
2 (f (x)Pk(x)) = f̃ (x)Pk(x) on U,

where ∆ is the Laplace operator in dimension n + 1.
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The inverse Fueter mapping theorem, II

Definition (The functions F+
k,n(x) and F−k,n(x))

Let G(x − y) be the monogenic Cauchy kernel with x = x0 + x ∈ Rn+1

and for y = rω ∈ Rn we assume r = 1 and ω ∈ Sn−1. Let Pk(x) be an
inner left spherical monogenic polynomial of degree k ∈N0. We define

F+
k,n(x) =

∫
Sn−1

G(x − ω)Pk(ω) dS(ω),

F−k,n(x) =

∫
Sn−1

G(x − ω)ω Pk(ω)dS(ω),

where dS(ω) is the scalar element of surface area of Sn−1.
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The inverse Fueter mapping theorem, II

Theorem (Factorization property of F+
k,n(x) and F−k,n(x))

Let n be an odd number. Let Pk(x) be an inner left spherical monogenic
polynomial of degree k ∈N0. Then there exists two functions S+

k,n(x)

and S−k,n(x) belonging to N (U), independent of Pk(x), such that

F+
k,n(x) = S+

k,n(x)Pk(x),

F−k,n(x) = S−k,n(x)Pk(x) and

lim
x→0
S+
k,n(x) = Ck,n

x0

(x2
0 + 1)k+(n+1)/2

,

lim
x→0
S−k,n(x) = −Ck,n

1

(x2
0 + 1)k+(n+1)/2

,

where Ck,n := (−1)k√
π

Γ(k+ n+1
2 )

Γ(k+ n
2 ) .
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The inverse Fueter mapping theorem, II

Definition

Let n be an odd number. Let Pk(x) be an inner left spherical monogenic
polynomial of degree k ∈N0. We will denote by W+

k,n(x)Pk(x) and

W−k,n(x)Pk(x) the Fueter primitives of F+
k,n(x) and F−k,n(x), that is

W+
k,n(x)Pk(x) and W−k,n(x)Pk(x) satisfy

∆k+ n−1
2 (W+

k,n(x)Pk(x)) = F+
k,n(x), ∆k+ n−1

2 (W−k,n(x)Pk(x)) = F−k,n(x).
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The inverse Fueter mapping theorem, II

W+
k,n(x0) =

Ck,n
Hk,n

D−(2k+n−1) x0

(x2
0 + 1)k+(n+1)/2

W−k,n(x0) := − Ck,n
Hk,n

D−(2k+n−1) 1

(x2
0 + 1)k+(n+1)/2

.

Replacing now x0 by x in W±k,n(x0) we get W±k,n(x) which are the
required functions.
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The inverse Fueter mapping theorem, II

Theorem (The inverse Fueter mapping theorem)

Let n be an odd number and let Pk(x) be an inner left spherical
monogenic polynomial of degree k ∈N0. Let

f̃ (x)Pk(x) = (A(x0, r) + ωB(x0, r))Pk(x)

be an axially monogenic function of degree k defined on an axially
symmetric U ⊆ Rn+1. Let Γ be the boundary of an open bounded subset
V of the half plane R+ ωR+ and let V ⊂ U be the open set in Rn+1

induced by V. Moreover suppose that Γ is a regular curve and consider
the manifold

Σ := {y0 + ωr | (y0, r) ∈ Γ, ω ∈ Sn−1}.
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The inverse Fueter mapping theorem, II

Then the function
f (x)Pk(x)

=

∫
Γ

W−k,n
(x − y0

r

)
Pk

(x − y0

r

)
r 2k+n−2[dy0 A(y0, r)− dr B(y0, r)]

−
∫

Γ

W+
k,n

(x − y0

r

)
Pk

(x − y0

r

)
r 2k+n−2[dy0B(y0, r) + drA(y0, r)].

is a Fueter’s primitive of f̃ (x)Pk(x) on V .
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The inverse Fueter mapping theorem, II

Let us denote by AMk(U) the set of axially monogenic functions of
degree k on the axially symmetric open set U and let us introduce the set

Nk(U) = {ϕk =

mk∑
j=1

fj(x)Pk,j(x) | fj ∈ N (U)}.

Fabrizio Colombo Inversione della mappa di Fueter-Sce



Outline
The Fueter-Sce Mapping theorem

The inverse Fueter mapping theorem, I
The inverse Fueter mapping theorem, II

The case of biaxially monogenic functions, III
The Fueter-Sce mappling in integral form

The Fueter mapping theorem in integral form
The F-functional calculus for bounded operators

Corollary

Let n be an odd number and let U be an axially symmetric open set in
Rn+1. There is a map of Rn-modules

AMk(U)→ Nk(U),

such that (Ak + ωBk)Pk = ∆k+ n−1
2 ((αk + ωβk)Pk). Moreover, there is a

map

M(U)→
⊕
k

∆kNk(U),

such that, given f̃ =
∑

k f̃k ∈M(U), fk ∈ AMk(U), there are ϕk ∈ Nk

such that
f̃ = ∆

n−1
2

∑
k

∆kϕk .
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The case of biaxially monogenic functions, III

Definition

Let U be an open set in Rp ×Rq be invariant under the action of the
group Spin(p)× Spin(q). Roughly speaking a monogenic function on U
that is of the form

f (x , y) = A(|x |, |y |) +
x

|x |
B(|x |, |y |) +

y

|y |
C (|x |, |y |) +

x

|x |
y

|y |
D(|x |, |y |)

is said biaxially monogenic function on U. Both

x

|x |
B(|x |, |y |) +

y

|y |
C (|x |, |y |), (7)

and

A(|x |, |y |) +
x

|x |
y

|y |
D(|x |, |y |), (8)

are biaxially monogenic functions.

Definition

Let U ⊆ R+ ×R+ and let U ⊆ Rp ×Rq be such that (x , y) ∈ U if and
only if (|x |, |y |) ∈ U . Then we denote by HB(U) the set of functions W
of the form

W (x , y) = h1(|x |, |y |) x

|x |
+ h2(|x |, |y |)

y

|y |

with h1, h2 real valued and such that W is monogenic with respect to the
operator

x

|x |
∂|x| +

y

|y |
∂|y |.
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The case of biaxially monogenic functions, III

T. Qian, F. Sommen, Deriving harmonic functions in higher dimensional
spaces, Zeit. Anal. Anwen., 2 (2003), 1–12. shows that the Fueter
mapping theorem can be extended to this setting.
Indeed, functions W of type

W (x , y) = h1(|x |, |y |) x

|x |
+ h2(|x |, |y |)

y

|y |
(9)

with h1, h2 real valued and such that W is in the kernel of the operator
x
|x|∂|x| +

y

|y |∂|y |, are such that

∆
p+q

2 −1W (x , y) = f (x , y) (10)

with f biaxially monogenic.
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The case of biaxially monogenic functions, III

Definition

Let U ⊆ (R+ ∪ {0})× (R+ ∪ {0}) and let U ⊆ Rp ×Rq be the set
induced by U . Then we denote by HB(U) the set of functions W of the
form

W (x , y) = h1(|x |, |y |) x

|x |
+ h2(|x |, |y |)

y

|y |

with h1, h2 real valued and such that W is in the kernel of the operator

x

|x |
∂|x| +

y

|y |
∂|y |.
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Lemma

Let U be an open set in Rp ×Rq, for p ≥ 1 and q ≥ 1, invariant under
the action of the group Spin(p)× Spin(q) and let x/r ∈ Sp−1,
y/ρ ∈ Sq−1, where r = |x |, ρ = |y |. Then the function W is in the kernel

of the operator x
|x|∂|x| +

y

|y |∂|y | if and only if its components h1 and h2

satisfy the equations{
∂rh1(r , ρ) + ∂ρh2(r , ρ) = 0,
∂ρh1(r , ρ)− ∂rh2(r , ρ) = 0.

(11)
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The case of biaxially monogenic functions, III

Proposition

Let U in Rp ×Rq, for p ≥ 1 and q ≥ 1, be invariant under the action of
the group Spin(p)× Spin(q), and assume that W ∈ HB(U). Then we
have

W (x , y) = Re
(

(h1(r , ρ) + ih2(r , ρ))(ω − iν)
)
. (12)

Moreover, if we set

H(r − iρ) := h1(r , ρ) + ih2(r , ρ), H(`)(r) := ∂`r H(r), ` = 0, 1, 2, ...
(13)

then W can be represented in power series as follows:

W (x , y) =
+∞∑
`=0

( 1

(2`)!
y 2`H(2`)(r)

x

r
− 1

(2`+ 1)!
y 2`+1H(2`+1)(r)

)
. (14)
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The case of biaxially monogenic functions, III

Problem

Let f be a biaxially monogenic function on an open set U ⊆ Rp ×Rq,
invariant under the action of the group Spin(p)× Spin(q), determine a
function W ∈ HB(U) such that

f (x , y) = ∆
m
2 −1(W (x , y)),

where m = p + q, and p and q odd positive integers.
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Theorem

Let U be a domain in R3 ×R3 invariant under the action of the group
Spin(3)× Spin(3) and let W ∈ HB(U). Then we have

(∆x + ∆y )2W (x , y)|y=0 = −8∂r
(1

r
∂2
r H(r)

)
ω,

where x/r = ω.
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Definition (The kernels N+
p,q,λ,µ(x , y) and N−p,q,λ,µ(x , y))

Let p, q ∈N and let G(x + y − X − Y ) be the monogenic Cauchy kernel

with x ∈ Rp, y ∈ Rq, and assume ω ∈ Sp−1, η ∈ Sq−1 and for λ > 0 and
µ > 0, we define the kernels

N+
p,q,λ,µ(x , y) =

1

Ap+q

∫
Sp−1

∫
Sq−1

G(x + y − λξ − µη) dS(ξ) dS(η), (15)

N−p,q,λ,µ(x , y) =
1

Ap+q

∫
Sp−1

∫
Sq−1

G(x + y − λξ − µη) ξ η dS(ξ)dS(η),

(16)
where dS(ξ) and dS(η) are the scalar element of surface area of Sp−1

and of Sq−1, respectively.
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Theorem (The restrictions of the kernels N+
p,q(x , y) and N−p,q(x , y) to

y = 0)

Let p, q be odd numbers. Let N+
p,q(x , y) and N−p,q(x , y) be the kernels

defined in (15) and (16), respectively. Then their restrictions to y = 0
are given by

N+
p,q,λ,µ(x , 0) =

AqAp−1

Ap+q
[J2,λ,µ(r ; p, q)− rλJ1,λ,µ(r ; p, q)]

x

r
(17)

N−p,q,λ,µ(x , 0) =
Aq

Ap+q
J2,λ,µ(r , p, q)µ

x

r
(18)

where the functions Jj,λ,µ(r ; p, q), j = 1, 2 are given by

Jj,λ,µ(r ; p, q) :=

∫ 1

−1

t j−1(1− t2)(p−3)/2

(r 2 − 2rλt + λ2 + µ2)(p+q)/2
dt, j = 1, 2. (19)
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Theorem (The restrictions of the kernels N+
3,3,λ,µ(x , y) and N−3,3,λ,µ(x , y)

to y = 0)

Let N+
3,3,λ,µ(x , y) and N−3,3,λ,µ(x , y) be the kernels defined in (15) and

(16), respectively. Then their restrictions to y = 0 are given by

N+
3,3,λ,µ(x , 0) =

A3A2

A6

2λr(2− (r 2 + λ2 + µ2))

[(r 2 + λ2 + µ2)2 − 4λ2r 2]2

x

r
, (20)

N−3,3,λ,µ(x , 0) =
A3

A6

4λµr

[(r 2 + λ2 + µ2)2 − 4λ2r 2]2

x

r
. (21)
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Definition

Let p and q be an odd numbers and let λ > 0 and µ > 0. We say that
W+

p,q,λ,µ(x , y) and W−p,q,λ,µ(x , y) are Fueter’s primitives of N+
p,q,λ,µ(x , y)

and N−p,q,λ,µ(x , y), respectively, if they satisfy

∆
(p+q)

2 −1(W+
p,q,λ,µ(x , y)) = N+

p,q,λ,µ(x , y),

∆
(p+q)

2 −1(W−p,q,λ,µ(x , y)) = N−p,q,λ,µ(x , y).

Fabrizio Colombo Inversione della mappa di Fueter-Sce



Outline
The Fueter-Sce Mapping theorem

The inverse Fueter mapping theorem, I
The inverse Fueter mapping theorem, II

The case of biaxially monogenic functions, III
The Fueter-Sce mappling in integral form

The Fueter mapping theorem in integral form
The F-functional calculus for bounded operators

Definition

Let p and q be an odd numbers and let λ > 0 and µ > 0. Let
W+

p,q,λ,µ(x , y) and W−p,q,λ,µ(x , y) be Fueter primitives of N+
p,q,λ,µ(x , y)

and N−p,q,λ,µ(x , y). We denote by H
(`)
p,q,λ,µ,±(r), for ` ∈N ∪ {0}, the

coefficients that appear in the series expansions:

W±p,q,λ,µ(x , y)

=
+∞∑
`=0

( 1

(2`)!
y 2`H

(2`)
p,q,λ,µ,±(r)

x

r
− 1

(2`+ 1)!
y 2`+1H

(2`+1)
p,q,λ,µ,±(r)

)
.
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Theorem (The differential equations for coefficients of the restrictions of
W±3,3,λ,µ)

The coefficients H
(`)
3,3,λ,µ,±(r), for ` ∈N ∪ {0}, in the series expansions:

W±3,3,λ,µ(x , y)

=
+∞∑
`=0

( 1

(2`)!
y 2`H

(2`)
3,3,λ,µ,±(r)

x

r
− 1

(2`+ 1)!
y 2`+1H

(2`+1)
3,3,λ,µ,±(r)

)
of Fueter’s primitives of N±3,3,λ,µ(x , y) are given by the differential
equations

−8∂r
(1

r
∂2
r H3,3,λ,µ,+(r)

)
=

A3A2

A6

2λr(2− (r 2 + λ2 + µ2))

[(r 2 + λ2 + µ2)2 − 4λ2r 2]2
,

−8∂r
(1

r
∂2
r H3,3,λ,µ,−(r)

)
=

A3

A6

4λµr

[(r 2 + λ2 + µ2)2 − 4λ2r 2]2
.
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Theorem

Let f (x) be a biaxially monogenic function of the form (where ω = x/r ,
r = |x |, ν = y/ρ, ρ = |y |), f (x , y) = ωB(ρ, r) + νC (ρ, r) defined on an
axially symmetric domain U ⊆ Rp+q, where p and q are odd numbers.
Let Γ be the boundary of an open bounded subset V of the half plane
ξR+ + ηR+ and let

V = {ξu + ηv , (u, v) ∈ V, ξ ∈ Sp−1, η ∈ Sq−1} ⊂ U. Moreover
suppose, that Γ is a regular curve whose parametric equations λ = λ(s),
µ = µ(s) are expressed in terms of the arc-length s ∈ [0, L], L > 0. Then
the function

W (x , y) :=

∫
Γ

W+
p,q,λ,µ(x , y)µp−1λq−1 [C (λ, µ)dλ− B(λ, µ)dµ] (22)

+

∫
Γ

W−p,q,λ,µ(x , y)µp−1λq−1 [B(λ, µ)dλ+ C (λ, µ)dµ],

is a Fueter’s primitive of f (x , y) on U.
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The Fueter-Sce mappling in integral form

Theorem (Representation Formula (or Structure Formula))

Let U ⊆ Rn+1 be an axially symmetric (s-domain) and let f be an
s-monogenic function on U. For any vector x = u + Ixv ∈ U the
following formulas hold:

f (x) =
1

2

[
1− Ix I

]
f (u + Iv) +

1

2

[
1 + Ix I

]
f (u − Iv) (23)
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The Fueter-Sce mappling in integral form

By the Representation Formula SM(U) consists of those functions

f (x0, |x |) = u(x0, |x |) + Iv(x0, |x |), I ∈ S

where u, v : U ⊂ Rn+1 → Rn,
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The Fueter-Sce mappling in integral form

Describe the map f 7→ f̆ = ∆
n−1

2
n+1f , f ∈ SM(U) in integral form.

Provide a functional calculus based on axially monogenic functions.
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The Fueter-Sce mappling in integral form

Cauchy formula with s-monogenic kernel

Let U ⊂ Rn+1 be a bounded axially symmetric s-domain such that
∂(U ∩ CI ) is union of a finite number of rectifiable Jordan curves for
every I ∈ S. Let f be a left s-monogenic function on an open set that
contains U, x ∈ U and set dsI = ds/I , ds = du + Idv . Then

f (x) =
1

2π

∫
∂(U∩CI )

S−1(s, x)dsI f (s) (24)

where
S−1(s, x) = −(x2 − 2xRe(s) + |s|2)−1(x − s)

and the integral does not depend on U and on the imaginary unit I ∈ S.
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Theorem:
Let x , s ∈ Rn+1 be such that x 6∈ [s]. Then the following identity holds:

−(x2 − 2xRe(s) + |s|2)−1(x − s) = (s − x̄)(s2 − 2Re(x)s + |x |2)−1.

Definition

Let x , s ∈ Rn+1 be such that x 6∈ [s].

We say that S−1(s, x) is written in the form I if

S−1(s, x) := −(x2 − 2xRe(s) + |s|2)−1(x − s).

We say that S−1(s, x) is written in the form II if

S−1(s, x) := (s − x̄)(s2 − 2Re(x)s + |x |2)−1.
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The Fueter-Sce mappling in integral form

Remark

Even though S−1(s, x) written in the form I is more suitable for several
applications, for example for the definition of a functional calculus, it
does not allow easy computation of the powers of the Laplacian

∆ = ∆n+1 = ∂2
x0

+ ∂2
x1

+ ...+ ∂2
xn

applied to it. The form II is the one that allows, by iteration, the

computation of ∆
n−1

2 S−1(s, x).
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Theorem (Explicit computation of ∆
n−1

2 S−1(s, x))

Let x, s ∈ Rn+1 be such that x 6∈ [s]. Let
S−1(s, x) = (s − x̄)(s2 − 2Re(x)s + |x |2)−1 be the slice-monogenic

Cauchy kernel and let ∆ =
∑n

i=0
∂2

∂x2
i

be the Laplace operator in the

variable x. Then, for h ≥ 1, we have:

∆hS−1(s, x) = Cn,h(s − x̄)(s2 − 2Re(x)s + |x |2)−(h+1).

where

Cn,h := (−1)h
h∏
`=1

(2`)
h∏
`=1

(n − (2`− 1)).
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Theorem

Let x , s ∈ Rn+1 be such that x 6∈ [s]. Then the function

∆hS−1(s, x)

is a right s-monogenic function in the variable s, for any h ∈N.

Theorem

Let n be an odd number and let x , s ∈ Rn+1 be such that x 6∈ [s]. Then
the function

∆
n−1

2 S−1(s, x)

is a monogenic function in the variable x .
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Definition (The Fn-kernel)

Let n be an odd number. Let x , s ∈ Rn+1. We define, for s 6∈ [x ], the
Fn-kernel as

Fn(s, x) := ∆
n−1

2 S−1(s, x) = γn(s − x̄)(s2 − 2Re(x)s + |x |2)−
n+1

2 ,

where

γn := (−1)(n−1)/22n−1
((n − 1

2

)
!
)2

.
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Theorem (The Fueter mapping theorem in integral form)

Let n be an odd number. Let U ⊂ Rn+1 be a bounded axially symmetric
s-domain such that ∂(U ∩ CI ) is union of a finite number of rectifiable
Jordan curves for every I ∈ S. Let f be a left s-monogenic function on an
open set that contains U, x ∈ U and set dsI = ds/I , ds = du + Idv .

Then, if x ∈ U, the function f̆ (x) given by f̆ (x) = ∆
n−1

2 f (x) is
monogenic and it admits the integral representation

f̆ (x) =
1

2π

∫
∂(U∩CI )

Fn(s, x)dsI f (s), dsI = ds/I , (25)

where the integral does not depend on U nor on the imaginary unit I ∈ S.
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Vn is two-sided Banach module V ⊗Rn over Rn.

An element in Vn is of the type
∑

A vA ⊗ eA is a multi-index.

Finally, we define ‖v‖Vn =
∑

A ‖vA‖V .

B(V ) the space of bounded R-homomorphisms of the Banach space
V to itself endowed with the natural norm denoted by ‖ · ‖B(V ).

Given TA ∈ B(V ), we can introduce the operator T =
∑

A TAeA
and its action on v =

∑
vBeB ∈ Vn as T (v) =

∑
A,B TA(vB)eAeB .
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The operator T is a module homomorphism which is a bounded
linear map on Vn.

The set of all such bounded operators, with commuting
components, is denoted by BCn(Vn).

We define ‖T‖BCn(Vn) =
∑

A ‖TA‖BC(V ).

BC0,1
n (Vn) is the space of operators of the form T = T0 +

∑n
j=1 Tjej

where Tµ ∈ B(V ) for µ = 0, 1, ..., n such that Tµ commute among
themselves.
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Definition

Let n be an odd number, and let m ∈N, then we set

Pm,n(x) := ∆
n−1

2 xm. (26)

In the sequel we omit the index n in Pm,n(x) and we simply write Pm(x).
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Lemma

Let n be an odd number, and s, x ∈ Rn+1. Then the series∑
m≥n−1

Pm(x)s−1−m,

converges if and only if |x | < |s|.
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Definition (Monogenic Cauchy kernel series)

Let s, x ∈ Rn+1 where n is an odd number. We define the monogenic
Cauchy kernel series as

FΣ(s, x) :=
∑

m≥n−1

Pm(x)s−1−m,

for |x | < |s|.
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Definition (Monogenic Cauchy kernel operator series)

Let n be an odd number, and let T ∈ BC0,1
n (Vn) with ‖T‖ < |s|, where

s ∈ Rn+1. We define the monogenic Cauchy kernel operator series as:

FΣ(s,T ) :=
∑

m≥n−1

Pm(T )s−1−m,

where we have substituted the operator Ti for xi in the polynomials
Pm(x).
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Theorem

Let n be an odd number, T ∈ BC0,1
n (Vn) with ‖T‖ < |s|, where

s ∈ Rn+1. Then we have∑
m≥n−1

Pm(T )s−1−m = γn(sI − T )(s2I − s(T + T ) + T T )−
n+1

2 ,

where

γn := (−1)(n−1)/22n−1
(

(
n − 1

2
)!
)2

.
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Definition (The F-spectrum and the F-resolvent sets)

Let n be an odd number and let T ∈ BC0,1
n (Vn). We define the

F-spectrum σF (T ) of T as:

σF (T ) = {s ∈ Rn+1 : s2I − s(T + T ) + T T is not invertible}.

The F-resolvent set ρF (T ) is defined by

ρF (T ) = Rn+1 \ σF (T ).

Fabrizio Colombo Inversione della mappa di Fueter-Sce



Outline
The Fueter-Sce Mapping theorem

The inverse Fueter mapping theorem, I
The inverse Fueter mapping theorem, II

The case of biaxially monogenic functions, III
The Fueter-Sce mappling in integral form

The Fueter mapping theorem in integral form
The F-functional calculus for bounded operators

The F-functional calculus for bounded operators

Theorem (Compactness of the F-spectrum)

Let n be an odd number, T ∈ B0,1
n (Vn) with commuting components.

Then the F-spectrum σF (T ) is a compact nonempty set. Moreover
σF (T ) is contained in {s ∈ Rn+1 : |s| ≤ ‖T‖ }.
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Theorem (Structure of the F-spectrum)

Let T ∈ BC0,1
n (Vn) and let p = p0 + p1I ∈ [p0 + p1I ] ⊂ Rn+1 \R, such

that p ∈ σF (T ). Then all the elements of the (n − 1)-sphere [p0 + p1I ]
belong to σF (T ). Thus the F-spectrum consists of real points and/or
(n − 1)-spheres.

Definition (F-resolvent operator)

Let n be an odd number, s ∈ Rn+1 and let T ∈ BC0,1
n (Vn). For

s ∈ ρF (T ) we define the F-resolvent operator by

Fn(s,T ) := γn(sI − T )(s2I − s(T + T ) + T T )−
n+1

2 .
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Definition

Let T ∈ BC0,1
n (Vn) and let U ⊂ Rn+1 be an axially symmetric

s-domain that contains the F-spectrum σF (T ), such that ∂(U ∩CI )
is union of a finite number of rectifiable Jordan curves for every
I ∈ S.
Let W be an open set in Rn+1. A function f ∈ SM(W ) is said to
be locally s-monogenic on σF (T ) if there exists a domain U ⊂ Rn+1,
as above and such that U ⊂W , on which f is s-monogenic.

We will denote by SMσF (T ) the set of locally s-monogenic functions
on σF (T ).
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Theorem

Let n be an odd number, T ∈ BC0,1
n (Vn), let f ∈ SMσF (T ). Let U be an

open set, containing σF (T ), as above. Then the integral

1

2π

∫
∂(U∩CI )

Fn(s,T ) dsI f (s), dsI = ds/I (27)

is independent of I ∈ S and of the open set U.
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Definition (The F-functional calculus)

Let n be an odd number, T ∈ BC0,1
n (Vn). Let U be an open set,

containing σF (T ), as above. Suppose that f ∈ SMσF (T ) and let

f̆ (x) = ∆
n−1

2 f (x). We define the F-functional calculus as

f̆ (T ) =
1

2π

∫
∂(U∩CI )

Fn(s,T ) dsI f (s).
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Corollary

Let n be an odd number, T ∈ BC0,1
n (Vn) and let U ⊃ σF (T ) be as

above. Then

Pm(T ) =
1

2π

∫
∂(U∩CI )

Fn(s,T ) dsI sm

and the integral does not depend on the open set U nor on I ∈ S.
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Definition

Let n be an odd number. Let {Tm}m∈N and T belong to BC0,1(Vn),
suppose that ρF (T ) = ρF (Tm) for all m ∈N. We say that Tm converges
to T in the norm F-resolvent sense if Fn(s,Tm)→ Fn(s,T ) as m→∞
for all s ∈ ρF (T ).
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Theorem

Let n be an odd number. Let {Tm}m∈N and T be elements in
BC0,1(Vn), suppose that ρF (T ) = ρF (Tm) for all m ∈N. Then Tm → T
in the norm if and only if Tm → T in the norm F -resolvent sense.
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Theorem

Let n be an odd number. Let f and g ∈ SMσF (T ) and let

f̆ (x) = ∆
n−1

2 f (x) and ğ(x) = ∆
n−1

2 g(x). Then we have

(f̆ + ğ)(T ) = f̆ (T ) + ğ(T ), (f̆ λ)(T ) = f̆ (T )λ, for all λ ∈ Rn.
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Theorem

Let n be an odd number and let T ∈ BC(Vn). Let f (s) =
∑
`≥0 s`a`

where a` ∈ Rn be such that f ∈ SMσF (T ) and let f̆ (x) = ∆
n−1

2 f (x).
Then we have

f̆ (T ) =
∑
`≥0

P`,n(T )a`.

where P`,n(T ) has been obtained by replacing x by T in the polynomials

P`,n(x) := ∆
n−1

2 x`.

Fabrizio Colombo Inversione della mappa di Fueter-Sce



Outline
The Fueter-Sce Mapping theorem

The inverse Fueter mapping theorem, I
The inverse Fueter mapping theorem, II

The case of biaxially monogenic functions, III
The Fueter-Sce mappling in integral form

The Fueter mapping theorem in integral form
The F-functional calculus for bounded operators

The F-functional calculus for bounded operators

Theorem (The F-resolvent equation)

Let n be an odd number and let T ∈ BC(Vn). Let s ∈ ρF (T ) then
Fn(s,T ), satisfies the equation

Fn(s,T )s − TFn(s,T ) = γnQs(T )
n−1

2 , (28)

where
Qs(T ) := (s2I − s(T + T ) + T T )−1.
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Theorem (Bounded perturbations)

Let n be an odd number, T ,Z ∈ BC0,1
n (Vn), f ∈ SMσF (T ) and let

ε > 0. Then there exists δ > 0 such that, for ‖Z − T‖ < δ, we have
f ∈ SMσF (Z) and

‖f̆ (Z )− f̆ (T )‖ < ε.
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